

1,4,5,8-Tetrakis(arylamino)anthraquinones/Near IR Dyes (II): Reaction of 4,8-Diaminoanthrarufin with Arylamines

Y. C. Chao

Department of Textile Industries, National Taipei Institute of Technology, Taipei, Taiwan

(Received 18 April 1994; accepted 3 June 1994)

ARSTRACT

Condensation of 4,5-dinitrochrysazin (DNCZ) and 4,8-diaminoanthrarufin (DAAR) with arylamines in the presence of boric acid and phenol gives 8-hydroxy-1,4,5-tris- and 1,4,5,8-tetrakis-(arylamino)anthraquinones, respectively. The dyes absorb in the near infrared at about 750–770 nm and colour polycarbonate (PC) film in green hues of very good light fastness. It is proposed that the initial enol-ketone and amino-imino tautomerism of DAAR facilitates the 1,4,5,8-tetrakis-arylamination.

1 INTRODUCTION

The condensation of DNCZ with excess arylamines in the presence of boric acid and zinc powder to give 1,4,5,8-tetrakisarylamino-anthraquinones, which absorb in the near infrared at about 750–770 nm, has been reported. 1,4,5-Trisarylamino-anthraquinones also result from condensation of 4,5-bisarylamino-chrysazin with excess arylamines in the presence of boric acid and phenol. Low yields and the use of a heavy metal (zinc) are the main disadvantages of these processes. Derivatives of DAAR are some of the most industrially useful anthraquinone dyes for synthetic polymer fibres. Monoalkylation of DAAR (by iodo- and bromo-alkanes) gives a range of blue dyes having excellent dyeing properties and acceptable fastness properties on polyester; bis-alkylation results in dyes of a greener hue, but with poorer colouration properties.

Reaction of 1,5-dimethoxy-4,8-diaminoanthraquinone with excess methylamine gives 1,4,5,8-tetrakis-methylamino-anthraquinone.⁵ Little data

192 Y. C. Chao

have been published on the reaction of DNCZ with arylamines in the presence of boric acid and phenol and on the reaction of DAAR with arylamines. The synthesis of a series of 1,4,5-trisarylamino-8-hydroxy-anthraquinones (I) from DNCZ and a series of 1,4,5,8-tetrakis-arylamino-anthraquinones (II) from DAAR is reported here, and possible mechanisms for the reaction of DAAR with excess arylamine are discussed.

2 EXPERIMENTAL

2.1 1,4,5-Trisarylamino-8-hydroxyanthraquinones (I)

DNCZ (1 g) and o-toluidine (25 ml) were refluxed for about 5 h (until a blue spot was apparent on TLC); a mixture of phenol (15 g), boric acid (2 g) and o-toluidine (8 ml) was added portion-wise and refluxing was continued for 35 h. The liquor was cooled to room temperature, then poured into methanol (50 ml) and left to stand overnight. The crystalline material which separated was filtered and washed with 10% hydrochloric acid and then with water until the washings were neutral and colourless. Recrystallization from 2-methoxyethanol gave 0.45 g (28%) 1,4,5-tris-(2'-methylanilino)-8-hydroxyanthraquinone (I.1), m.p. 285°C.

Dyes I.2-I.6 were synthesized by a similar procedure, as detailed in Table 1.

2.2 1,4,5,8-Tetrakis-arylaminoanthraquinones (II)

The above procedure (Section 2.1) was repeated, except that DNCZ was replaced by DAAR (1 g). Relevant data on yield and m.p. are given in Table 1.

2.3 General

All dyes were homogeneous on TLC (Merck, silica gel 5748) and were analytically pure; molecular weights and the absence of any higher molecular weight impurities were confirmed by mass spectrometry.

Dye	R	Amount of arylamines	Reaction time (h)	m.p. (°C)	Weight (g) (yield)
I.2	3-CH ₃	35 ml, <i>m</i> -toluidine	43	235–237	0.55 (34%)
I.3	2-OCH ₃	30 ml, o-anisidine	21	250-252	0.47 (27%)
I.4	3-OCH ₃	35 ml, <i>m</i> -anisidine	29	255-257	0.71 (40%)
I.5	$4-n-C_4H_9$	25 ml, p-(n-butyl)aniline	40	230-232	0.70 (35%)
I.6	$4-n-C_8H_{17}$	25 ml, p-(n-octyl)aniline	42	360-362	0.75 (30%)
I.7	4-CH ₃	3 g, p-toluidine and 20 ml, nitrobenzene	45	239–241	0.48 (30%)
I.8	Н	30 ml, aniline	15	224-226	0.69 (42%)
I.9	4-OC ₂ H ₅	30 ml, p-phenetidine	18	262-264	0.78 (41%)
II.1	4-CH ₃	3 g, p-toluidine and 25 ml, nitrobenzene	44	2310–312	1·40 (60%)*a
II.2	3-CH ₃	30 ml, m-toluidine	40	340-342	1.44 (62%)
II.3	2-CH ₃	30 ml, o-toluidine	42	325-327	1.51 (66%)
II.4	$4-n-C_4H_9$	25 ml, <i>n</i> -butylaniline	22	above 360	2.00 (68%)
II.5	4-OCH ₃	2.22 g, <i>p</i> -anisidine and 25 ml, nitrobenzene	48	above 360	1.56 (61%)
II.6	2-OCH ₃	30 ml, o-anisidine	40	350-352	1.40 (65%)**
II.7	$4-n-C_8H_{17}$	35 ml, p-n-octylaniline	41	above 360	2·28 (60%)*c

TABLE 1
Synthesis and Characterisation Data of Dyes I and II

Characterisation data were obtained by mass spectrometry (Hitachi M-52), IR (Hitachi 260-50) and ¹HNMR (Varian VXR-300) (Table 2). Electronic spectra were recorded on a Shimadzu UV 240 from dye solutions in chloroform and polycarbonate (PC) film (Table 3).

Dyeings on polycarbonate film and evaluations of the light fastness were carried out as for related dyes in a previous investigation¹ (Table 3).

3 RESULTS AND DISCUSSION

3.1 Syntheses

Condensation of DNCZ with excess arylamine in the presence of phenol and boric acid, under stringent conditions gave only 1,4,5-trisarylamino-8-hydroxy-anthraquinones (I), a result consistent with the mechanism previously noted.¹ Replacement of the amino groups in DAAR has usually been carried out using iodo- and bromo-alkanes (i.e. mono- and bis-

^{*} Purified by preparative TLC.

^a 15% V.1, 25% I.7 and 60% II.1.

^b 15% V.2, 20% I.3 and 65% II.6.

^c 18% V.3, 22% I.6 and 60% II.7.

TABLE 2
Spectroscopic Data

Dye	R	Mass (m/e)	IR^a (cm^{-1}, KBr)	NMR ^b (8 ppm, CDCl ₃)
1.1	2-CH ₃	539 (M ⁺) 269·5 (M ⁺²)	3450 (Ar-NH), 2900 (CH ₃) 2700 (b, OH), 1580, 1550 (C=O) 1340 (Car-N)	13.935 (s, 1H, OH), 11.933 (s, 1H, NH), 11.620 (s, 1H, NH), 11.461 (s, 1H, NH), 7.316–7.124 (m, 16H, Ar and Aq), 9.343 (e, 9H, Ar CH)
1.2	3-CH ₃	539 (M ⁺)	3450, 3350 (Ar-NH), 2900 (CH ₃), 2750 (b, OH), 1575, 1550 (C=O), 1320 (Car-N)	13·891 (s, 1H, OH), 12·000 (s, 1H, NH), 11·712 (s, 1H, NH), 11·533 (s, 1H, NH), 7·595-6·924 (m, 16H, Ar and Aq), 255.6, on A-CH)
13	2-0CH ₃	587 (M ⁺) 293·5 (M ⁺²)	3450 (Ar-NH), 2900 (CH ₃), 2750 (b, OH), 1590, 1560 (C=O), 1340 (Ar-N), 1250, 1020 (Ar-OCH ₃)	2.353 (s, 9tt, At-Cr ₃) 13.960 (s, 1H, OH), 11.853 (s, 1H, NH), 11.582 (s, 1H, NH), 11.422 (s, 1H, NH), 7.422-6.913 (m, 16H, Ar and Aq), 3.880 (s, 9H, OCH ₃)
F.4	3-0CH ₃	587 (M ⁺)	3400 (Ar-NH), 2800 (b, OH), 1590, 1580 (C=O), 1330 (Car-N), 1250 (Ar-OCH ₃)	13.926 (s, 1H, OH), 11.952 (s, 1H, NH), 11.640 (s, 1H, NH), 11.451 (s, 1H, NH), 7.380-6.840 (m, 16H, Ar and Aq), 2.9.4 (s, 0H, OCH),
1.5	4 - n - C_4 H_9	665 (M ⁺) 650 (M ⁺ –CH ₃)	3400 (Ar-NH), 2950, 2900 (CH ₃), 2850 (CH ₂), 1575 (C=O)	13-939 (s, 7H, OCH.) 13-939 (s, 1H, OH), 12-016 (s, 1H, HN), 11-726 (s, 1H, NH), 11-542 (s, 1H, NH), 7-557-6-960 (m, 16H, Ar and Aq), 2-632 (m, 6H, Ar-CH ₂), 1-585 (m, 6H, CH ₂), 1-362 (m, 6H, CH ₂)
9.1	4-n-C ₈ H ₁₇	833 (M ⁺) 734 (M ⁺ –C ₇ H ₁₅)	3420 (Ar-NH), 2930, 2900 (CH ₃), 2840 (CH ₂), 1560 (C=O)	0.943 (m, 9H, CH ₃) 13.9439 (s, 1H, OH), 12.031 (s, 1H, HN), 11.740 (s, 1H, NH), 11.538 (s, 1H, NH), 7.506–7.081 (m, 16H, Ar and Aq), 2.611 (m, 6H, Ar–CH ₂), 1.621 (m, 6H, CH ₂), 1.264 (m, 30H, (CH ₂) ₅), 0.890 (m. 9H, CH ₁)

L.7	É	539 (M ⁺) 269·5 (M ⁺²)	Ж)	13-934 (s, 1H, OH), 12-00 (s, 1H, NH), 11-72 (s, 1H, NH), 11-580 (s, 1H, NH), 7-580-7-080 (m, 16H, Ar and Aq), 2-368 (s, 9H, Ar-CH ₃)
1.8		497 (M ⁺) 406 (M ⁺ -NC ₆ H ₅)	3400 (Ar-NH), 1580 (C=O), 1300 (Car-N)	13.923 (s, 1H, OH), 12.010 (s, 1H, NH), 11.725 (s, 1H, NH), 11.586 (s, 1H, NH), 7.398-6.553 (m, 19H, Ar and Aq)
F)	4-0C ₂ H ₅	629 (M ⁺)	3310, 3250 (Ar-NH), 2970, 2940 (CH ₃), 2870 (CH ₂), 1605 (C=O), 1308 (Car-N), 1250, 1060 (Ar-OCH ₃)	13-920 (s, 1H, OH), 11-950 (s, 1H, NH), 11-648 (s, 1H, NH), 11-460 (s, 1H, NH), 7-349-6-640 (m, 16H, Ar and Aq), 4-050 (g, 6H, OCH,) 1-370 (t, 9H, CH,)
п.1	4-CH ₃	628 (M ⁺) 314 (M ⁺²)	3350 (b, Ar-NH), 2900 (CH ₃), 1595 (C=O)	11.780 (s, 4H, NH), 7.450-7.169 (m, 2OH, Ar and Aq), 2.358 (s. 12H, Ar-CH,)
11.2	3-CH;	628 (M ⁺) 314 (M ⁺²)	3400 (b, Ar-NH), 2900 (CH ₃), 1580 (C=O)	11.790 (s, 4H, NH), 7.517-6.190 (m, 20H, Ar and Aq), 2.367 (s, 12H, Ar-CH ₃)
ш.3	2-CH ₃	628 (M ⁺) 314 (M ⁺²)	3350 (b, Ar-NH), 2900, 2820 (CH ₃), 1590 (C=O)	11.790 (s, 4H, NH), 7.300-7.100 (m, 2OH, Ar and Aq), 2.353 (s, 12H, Ar-CH ₁)
11.4	4-n-C ₄ H ₉	796 (M ⁺) 398 (M ⁺²)	3450 (b, Ar-NH), 2950, 2900 (CH ₃), 2850 (CH ₂), 1592 (C=O),	11-480 (s, 4H, NH), 7-611-6-914 (m, 2OH, Ar and Aq), 2-650 (m, 8H, Ar-CH ₂), 1-585 (m, 8H, CH ₂), 1-387 (m, 8H, CH ₂), 1-264 (m, 8H, CH ₂), 0-944 (t, 12H, CH ₂)
11.5	4-0CH ₃	692 (M ⁺) 346 (M ⁺²)	3450 (b, Ar-NH), 1595 (C=O 1290 (Car-N), 1240, 1030 (Ar-OCH ₃)	11-650 (s, 4H, NH), 7-400-6-921 (m, 20H, Ar and Aq), 3-841 (s, 12H, OCH,)
11.6	2-0CH ₃	692 (M ⁺)	3300 (b, Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1008 (Ar-OCH ₃)	11.780 (s, 4H, NH), 7.560-6·610 (m, 2OH, Ar and Aq), 3.822 (s, 12H, OCH,)
П.7	4-n-C ₈ H ₁₇	1020 (M*)	3350 (b, Ar-NH), 2940, 2900 (CH ₃), 2850 (CH ₂), 1595 (C=O)	11-680 (s, 4H, NH), 7-220-7-150 (m, 12H, Ar and Aq), 2-173 (m, 8H, CH ₂), 1-336 (m, 8H, CH ₂), 1-257 (m, 24H, (CH ₂) ₃), 0-896 (m, 16H, (CH ₂) ₂), 0-864 (m, 12H, CH ₃)

TABLE 2—contd
Spectroscopic Data

 III. H 420 (M') 3400 (Ar-NH), 1580 (C=O), 7368-6853 (m, 14H, Ar and Aq) 1305 (Car-N) 1305 (Car-N) 1305 (Car-N) 1305 (Car-N) 1305 (Car-N) 1205 (C=O) 12010 (s, 4H, NH₂), 11-495 (s, 2H, NH₂) 1495 (s, 2H, NH₂) 1305 (Car-N), 1206 (Ar-OCH₃) 12002 (g, 4H, OCH₃), 11-910 (s, 1H, NH₂) 11-495 (s, 2H, NH₂) 1305 (Car-N), 1205 (Ar-NH), 1885 (C=O), 17-205 (s, 2H, NH₂), 11-910 (s, 1H, NH₂) 11-950 (s, 1H, NH₂) 11-950 (s, 1H, NH₂) 11-910 (s, 1H, NH₂) 11-920 (s, 1H, NH₂) 11-90 (s, 2H, NH₂) 11-90 (s, 2H, NH₂) 11-90 (s, 2H, NH₂) 11-90 (s, 2H, NH₂) 11-920 (s, 2H	Дуе	R	Mass (m/e)	IRa (cm ⁻¹ , KBr)	NMR ^b (8 ppm, CDCl ₃)
4-OC ₂ H ₅ 508 (M ⁺) 3350 (Ar-NH), 2950 (CH ₃), 2860 (CH ₂), 1605 (C=O) 1305 (Car-N), 1250 (Ar-OCH ₃) H	III.1		420 (M ⁺)	3400 (Ar-NH), 1580 (C=O), 1305 (Car-N)	12.030 (s, 4H, NH ₂), 11.580 (s, 2H, NH), 7.368-6.853 (m. 14H, Ar and Ac)
H 496 (M ⁺) 1405 (Car–N), 1230 (Ar–OCH ₃) 4-OC ₂ H ₅ 628 (M ⁺) 3350 (Ar–NH), 1585 (C=O), 1305 (Car–N), 1250, 1010 (Ar–OCH ₃), 2870 (CH ₃), 1605 (C=O), 1305 (Ar–NH), 2905 (CH ₃), 1305 (Ar–NH), 2905 (CH ₃), 1580, 1560 (C=O), 1315 (Car–N) 4-DCH ₃ 482 (M ⁺) 3310 (b, Ar–NH), 2905 (CH ₃), 1590 (C=O) 4-DCH ₃ 482 (M ⁺) 3350 (b, Ar–NH), 2950, 2910 (CH ₃), 2-OCH ₃ 482 (M ⁺) 3330 (Ar–NH), 2950 (CH ₃), 1580 (C=O) 1250, 1030 (Ar–OCH ₃) 1550 (C=O), 1250, 1030 (Ar–OCH ₃)	111.2	40С,Н,	508 (M ⁺)	3350 (Ar-NH), 2950 (CH ₃), 2860 (CH ₃), 1605 (C=O)	12.010 (s, 4H, NH ₂), 11.495 (s, 2H, NH), 7.359-6-650 (m, 12H, Ar and Aq),
4-OC ₂ H ₅ 628 (M ⁺) 3350 (Ar-NH), 2960 (CH ₃), 2870 (CH ₂), 1605 (C=O), 1305 (Car-N), 1250, 1010 (Ar-OCH ₃), 225 (M ⁺²) 1580, 1560 (C=O), 1315 (Car-N) 2.0CH ₃ 482 (M ⁺ + CH ₃ - CH ₃ - CH ₃ + CH	IV.1	#	496 (M ⁺)	1305 (Car–N), 1250 (Ar–OCH ₃) 3405 (Ar–NH), 1585 (C=O), 1305 (Car–N)	4-020 (q, 4H, OCH ₂), 1-375 (t, 6H, CH ₃) 12-025 (s, 2H, NH ₂), 11-910 (s, 1H, NH), 11-750 (s, 1H, NH), 11-520 (s, 1H, NH),
4-CH ₃ 450 (M ⁺) 3405 (Ar-NH), 2505 (CH ₃), 225 (M ⁺ ²) 1580, 1560 (C=O), 1315 (Car-N) 2.0CH ₃ 482 (M ⁺) 3310 (b, Ar-NH), 2905 (CH ₃), 1590 (C=O) 452 (M ⁺ -CH ₃ -CH ₃) 1250, 1010 (Ar-OCH ₃) 3350 (b, Ar-NH), 2950, 2910 (CH ₃), 2850 (CH ₂), 1595 (C=O) 2323 (M ⁺ ²) 2850 (CH ₂), 1595 (C=O) 1250, 1030 (Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1030 (Ar-OCH ₃)	IV.2	4-0C ₂ H ₅	628 (M*)	3350 (Ar-NH), 2960 (CH ₃), 2870 (CH ₂), 1605 (C=O),	12:005 (s, 2H, NH ₂), 11:750 (s, 1H, NH), 11:650 (s, 1H, NH), 11:452 (s, 1H, NH), 12:00 (s, 1H, NH), 11:452 (s, 1H, NH), 12:00 (s, 1H, NH), 12:00 (s, 1H, NH), 13:00 (s, 1H, NH), 14:00 (s, 1H, NH), 15:00
2-OCH ₃ 482 (M ⁺) 3310 (b, Ar-NH), 2905 (CH ₃), 1590 (C=0) 452 (M ⁺ -CH ₃ -CH ₃) 1256, 1010 (Ar-OCH ₃) 4-n-C ₈ H ₁₇ 646 (M ⁺) 3350 (b, Ar-NH), 2950, 2910 (CH ₃), 323 (M ⁺²) 2850 (CH ₂), 1595 (C=O) 3-OCH ₃ 482 (M ⁺) 3330 (Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1030 (Ar-OCH ₃)	V.1	4-CH ₃	450 (M ⁺) 225 (M ⁺²)	1580, 1560 (C=O), 1315 (Car-N)	7.300-7.51 (m, 10H, At and Aq), 7.420-7.100 (m, 12H, Ar and Aq), 272 (c, th, A
4-n-C ₈ H ₁₇ 646 (M ⁺) 3350 (b, Ar-NH), 2950, 2910 (CH ₃), 323 (M ⁺²) 2850 (CH ₂), 1595 (C=O) 3-OCH ₃ 482 (M ⁺) 3330 (Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1030 (Ar-OCH ₃)	V.2	2-0CH ₃	482 (M ⁺) 452 (M ⁺ -CH ₃ -CH ₃)	3310 (b, Ar-NH), 2905 (CH ₃), 1590 (C=O) 1250, 1010 (Ar-OCH ₃)	13-950 (s, 2H, OH), 11-412 (s, 2H, NH) 7-432-6-813 (m, 12H, Ar and Aq),
3-OCH ₃ 482 (M ⁺) 3330 (Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1030 (Ar-OCH ₃)	V.3		646 (M ⁺) 323 (M ⁺²)	3350 (b, Ar-NH), 2950, 2910 (CH ₃), 2850 (CH ₂), 1595 (C=O)	7-57045, 9rh, OCH3) 13-940 (s, 2H, OH), 11-528 (s, 2H, NH) 7-510-7-065 (m, 12H, Ar and Aq), 2-605 (m, 4H, Ar-CH2), 1-610 (m, 4H, CH3),
	V.4	3-0CH ₃	482 (M ⁺)	3330 (Ar-NH), 2900 (CH ₃), 1580 (C=O), 1250, 1030 (Ar-OCH ₃)	1.254 (m, 2OH, (CH ₂)s), 0.680 (m, 0H, CH ₃) 13.930 (s, 2H, OH), 11.400 (s, 2H, NH) 7.450–6.980 (m, 12H, Ar and Aq), 3.875 (s, 6H, OCH ₃)

^a Ar, aromatic; b, broad.
^b s, singlet; t, triplet, q, quartet; m, multiplet; Ar, aromatic; Aq, anthraquinone.

Colour and Fastness Properties TABLE 3

1.1 2-CH ₃ 718 (445), 665s (440), 413 (3·82) 720 5-6 1.2 3-CH ₃ 722 (446), 665s (436), 423 (3·80) 726 6 1.3 2-OCH ₃ 721 (447), 670s (446), 430 (3·91) 730 5-6 1.4 3-OCH ₃ 722 (449), 685s (446), 420 (3·97) 732 6-7 1.5 4-n-C ₄ H ₃ 724 (44.51), 670s (44.3), 420 (3·89) 732 6-7 1.6 4-n-C ₄ H ₃ 724 (4-51), 670s (44.3), 418 (3·80) 729 6-7 1.8 H 721 (44.5), 680s (44.3), 418 (3·70) 722 6-7 1.9 4-OC ₂ H ₃ 733 (4-50), 690s (4-43), 422 (3·72) 732 6-7 1.1.3 4-CH ₃ 756 (4-54), 690s (4-43), 422 (3·72) 762 6-7 1.1.3 2-CH ₃ 756 (4-54), 690s (4-43), 410 (4·01) 765 6-7 1.1.4 4-n-C ₄ H ₃ 761 (4-53), 685s (4-41), 405 (3·81) 769 6-7 1.1.4 4-n-C ₄ H ₃ 761 (4-57), 695s (4-48), 400 (4-04) 765 6-7 1.1.5 4-OCH ₃ 761 (4-54), 686 (4-40), 451 (3·71) 760 6-7 1.1.5 4-OCH ₃ <t< th=""><th>Дуе</th><th>R</th><th>λ_{\max} (nm) (log $arepsilon$) in chloroform^a</th><th>λ_{\max} (nm) on PC $film^b$</th><th>Light fastness on PC film^b</th><th>$\Delta\lambda_{1/2} \ (nm)^c$</th></t<>	Дуе	R	λ_{\max} (nm) (log $arepsilon$) in chloroform ^a	λ_{\max} (nm) on PC $film^b$	Light fastness on PC film ^b	$\Delta\lambda_{1/2} \ (nm)^c$
3-CH ₃ 722 (4-46), 665s (4.36), 423 (3.80) 726 2-OCH ₃ 721 (4-47), 670s (4-46), 430 (3.91) 730 3-OCH ₃ 722 (4-49), 685s (4-6), 420 (3.97) 730 4-n-C ₄ H ₉ 724 (4-51), 670s (4-39), 422 (3.81) 732 4-CH ₃ 724 (4-51), 670s (4-3), 420 (3.89) 733 4-CH ₃ 725 (4-47), 666s (4.36), 418 (3.70) 729 H 721 (4-45), 680* (4-44), 418 (3.70) 722 4-CC ₄ H ₅ 733 (4-50), 690s (4-43), 422 (3.72) 755 4-CH ₃ 756 (4-54), 690s (4-42), 410 (4-01) 765 2-CH ₃ 751 (4-53), 685s (4-11), 405 (3.81) 765 4-OCH ₃ 756 (4-63), 718s (4-55), 410 (4-00) 761 2-OCH ₃ 747 (4-54), 686 (4-40), 451 (3.71) 759 4-n-C ₈ H ₁ 761 (4-57), 695s (4-40), 451 (3.71) 768	1.1	2-CH ₃	718 (4.45), 665s (4.40), 413 (3.82)	720	9-9	140
2-OCH ₃ 2-OCH ₃ 3-OCH ₃ 3-OCH ₃ 4-n-C ₄ H ₉ 4-n-C ₄ H ₇ 722 (4-49), 685s (4-46), 420 (3-97) 4-n-C ₄ H ₉ 724 (4-51), 670s (4-43), 422 (3-81) 724 (4-51), 660s (4-39), 422 (3-81) 725 (4-47), 666s (4-36), 418 (3-80) 725 (4-47), 666s (4-36), 418 (3-70) 725 (4-47), 666s (4-43), 422 (3-72) 726 (4-54), 690s (4-43), 422 (3-72) 727 (4-54), 690s (4-43), 422 (3-72) 728 (4-54), 690s (4-42), 410 (4-01) 729 (4-51) 720 (4-51), 690s (4-43), 400 (3-92) 720 (4-51), 690s (4-41), 405 (3-81) 720 (4-51), 695s (4-41), 405 (3-81) 720 (4-51), 695s (4-40), 451 (3-71) 720 (4-54), 686 (4-40), 451 (3-71) 720 (4-56), 723s (4-56), 400 (4-04) 720 (4-56), 723s (4-56), 400 (4-04) 720 (4-56), 723s (4-45), 400 (4-04) 720 (4-56), 723s (4-45), 400 (4-04) 720 (4-56), 723s (4-45), 400 (4-04)	1.2	3-CH ₃	722 (4-46), 665s (4-36), 423 (3-80)	726	9	120
3-OCH ₃ 722 (4-49), 685s (4-46), 420 (3-97) 730 4- n -C ₄ H ₉ 724 (4-46), 670 (4-39), 422 (3-81) 732 4- n -C ₈ H ₁₇ 724 (4-51), 670s (4-43), 420 (3-89) 733 4-CH ₃ 725 (4-47), 666s (4-36), 418 (3-80) 729 H 721 (4-45), 680* (4-44), 418 (3-70) 722 4-OC ₂ H ₅ 733 (4-50), 690s (4-43), 422 (3-72) 732 4-CH ₃ 733 (4-50), 690s (4-42), 410 (4-01) 765 2-CH ₃ 756 (4-54), 690s (4-42), 400 (3-92) 760 2-CH ₃ 751 (4-53), 685s (4-41), 405 (3-81) 759 4-OCH ₃ 756 (4-63), 718s (4-55), 410 (4-00) 761 2-OCH ₃ 747 (4-54), 686 (4-40), 451 (3-71) 768	1.3	2-OCH ₃	721 (4-47), 670s (4-46), 430 (3-91)	730	5	139
4-n-C ₄ H ₉ 724 (4-46), 670 (4-39), 422 (3·81) 732 4-n-C ₈ H ₁₇ 724 (4-51), 670s (4-43), 420 (3·89) 733 4-CH ₃ 725 (4-47), 666s (4-36), 418 (3·80) 722 4-OC ₂ H ₅ 731 (4-45), 680* (4-44), 418 (3·70) 722 4-CC ₄ 733 (4·50), 690s (4-43), 422 (3·72) 732 4-CH ₃ 756 (4-54), 690s (4-42), 410 (4·01) 765 2-CH ₃ 751 (4·53), 685s (4-41), 405 (3·81) 765 4-n-C ₄ H ₉ 761 (4·57), 695s (4-48), 400 (4·04) 761 2-OCH ₃ 747 (4·54), 686 (4-40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4-45), 400 (4·04) 768	I.4	3-0CH ₃	722 (4-49), 685s (4-46), 420 (3-97)	730	5-6	140
$4 \cdot n \cdot C_8 H_{17}$ $724 (4.51), 670s (4.43), 420 (3.89)$ 733 $4 \cdot C_8 H_{17}$ $725 (4.47), 666s (4.36), 418 (3.80)$ 729 H $721 (4.45), 680^* (4.44), 418 (3.70)$ 722 $4 \cdot OC_2 H_5$ $733 (4.50), 690s (4.43), 422 (3.72)$ 732 $4 \cdot CH_3$ $756 (4.54), 690s (4.42), 410 (4.01)$ 765 $3 \cdot CH_3$ $751 (4.53), 685s (4.39), 400 (3.92)$ 760 $2 \cdot CH_3$ $761 (4.57), 695s (4.48), 400 (4.04)$ 759 $4 \cdot OCH_3$ $761 (4.57), 695s (4.48), 400 (4.04)$ 761 $2 \cdot OCH_3$ $747 (4.54), 686 (4.40), 451 (3.71)$ 750 $4 \cdot n \cdot C_8 H_{17}$ $761 (4.56), 723s (4.45), 400 (4.04)$ 768	1.5	4-n-C ₄ H ₉	724 (4.46), 670 (4.39), 422 (3.81)	732	6-7	126
4-CH ₃ 725 (4-47), 666s (4-36), 418 (3·80) 729 H 721 (4-45), 680* (4-34), 418 (3·70) 722 4-OC ₂ H ₅ 733 (4·50), 690s (4-43), 422 (3·72) 732 4-CH ₃ 756 (4·54), 690s (4-42), 410 (4·01) 765 3-CH ₃ 751 (4·53), 685s (4·39), 400 (3·92) 760 2-CH ₃ 751 (4·57), 695s (4·41), 405 (3·81) 759 4-n-C ₄ H ₉ 761 (4·57), 695s (4·48), 400 (4·04) 761 2-OCH ₃ 756 (4·63), 718s (4·55), 410 (4·00) 761 4-n-C ₈ H ₁₇ 761 (4·54), 686 (4·40), 451 (3·71) 760	9.T	4-n-C ₈ H ₁₇	724 (4·51), 670s (4·43), 420 (3·89)	733	9	125
H 721 (4-45), 680* (4-44), 418 (3-70) 722 4-OC ₂ H ₅ 733 (4-50), 690s (4-43), 422 (3-72) 735 756 (4-54), 690s (4-42), 410 (4-01) 765 2-CH ₃ 751 (4-53), 685s (4-41), 405 (3-81) 760 2-CH ₃ 761 (4-57), 695s (4-41), 405 (3-81) 763 4-OCH ₃ 761 (4-57), 695s (4-48), 400 (4-04) 765 767 768 769 760 761 760 760 760 760 760 760 760 760 760 760	1.7	4-CH ₃	725 (4-47), 666s (4-36), 418 (3-80)	729	9	120
4-OC ₂ H ₅ 733 (4-50), 690s (4-43), 422 (3-72) 732 4-CH ₃ 756 (4-54), 690s (4-42), 410 (4-01) 765 3-CH ₃ 751 (4-53), 685s (4-39), 400 (3-92) 760 2-CH ₃ 761 (4-57), 695s (4-41), 405 (3-81) 759 4-n-C ₄ H ₉ 761 (4-57), 695s (4-48), 400 (4-04) 761 2-OCH ₃ 747 (4-54), 686 (4-40), 451 (3-71) 750 4-n-C ₈ H ₁₇ 761 (4-56), 723s (4-45), 400 (4-04) 768	8.I	Н	721 (4.45), 680* (4.44), 418 (3.70)	722	9	142
4-CH ₃ 756 (4-54), 690s (4-42), 410 (4·01) 765 3-CH ₃ 751 (4-53), 685s (4-39), 400 (3·92) 760 2-CH ₃ 748 (4·52), 685s (4-41), 405 (3·81) 759 4-n-C ₄ H ₉ 761 (4·57), 695s (4-48), 400 (4·04) 765 4-OCH ₃ 756 (4·63), 718s (4·55), 410 (4·00) 761 2-OCH ₃ 747 (4·54), 686 (4·40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4·45), 400 (4·04) 768	6.1	4-0C ₂ H ₅	733 (4·50), 690s (4·43), 422 (3·72)	732	6-7	146
3-CH ₃ 751 (4-53), 685s (4-39), 400 (3-92) 760 2-CH ₃ 778 (4-52), 685s (4-41), 405 (3-81) 779 779 770 (4-57), 695s (4-48), 400 (4-04) 770 770 770 770 770 770 770 770 770 77	II.1	4-CH ₃	756 (4·54), 690s (4·42), 410 (4·01)	765	<i>L</i> -9	136
2-CH ₃ 748 (4·52), 685s (4·41), 405 (3·81) 759 4-n-C ₄ H ₉ 761 (4·57), 695s (4·48), 400 (4·04) 765 4-OCH ₃ 756 (4·63), 718s (4·55), 410 (4·00) 761 2-OCH ₃ 747 (4·54), 686 (4·40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4·45), 400 (4·04) 768	11.2	3-CH ₃	751 (4·53), 685s (4·39), 400 (3·92)	160	<i>L</i> -9	124
4-n-C ₄ H ₉ 761 (4·57), 695s (4·48), 400 (4·04) 765 4-OCH ₃ 756 (4·63), 718s (4·55), 410 (4·00) 761 2-OCH ₃ 747 (4·54), 686 (4·40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4·45), 400 (4·04) 768	П.3	2-CH ₃	748 (4.52), 685s (4.41), 405 (3.81)	759	<i>L</i> -9	121
4-OCH ₃ 756 (4-63), 718s (4-55), 410 (4·00) 761 2-OCH ₃ 747 (4·54), 686 (4·40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4·45), 400 (4·04) 768	11.4	$4-n-C_4H_9$	761 (4·57), 695s (4·48), 400 (4·04)	765	7	133
2-OCH ₃ 747 (4·54), 686 (4·40), 451 (3·71) 750 4-n-C ₈ H ₁₇ 761 (4·56), 723s (4·45), 400 (4·04) 768	11.5	4-0CH ₃	756 (4-63), 718s (4-55), 410 (4-00)	761	9	138
761 (4·56), 723s (4·45), 400 (4·04)	9.11	2-0CH ₃	747 (4·54), 686 (4·40), 451 (3·71)	750	9	119
	П.7	4n-C ₈ H ₁₇	761 (4·56), 723s (4·45), 400 (4·04)	768	L-9	119

 a s, shoulder; *, incompletely resolved. b 0·1% o.w.f. and 0·2 mm thick. c $\Delta\lambda_{1/2}$ (nm): half-band width.

198 Y. C. Chao

alkylation reactions).^{3,4} In this present investigation, a mixture of phenol and boric acid was used as reaction medium, with a large excess of arylamine and longer reaction time; replacement of both two amino groups and two hydroxy groups in DAAR occurred. The purity of and yields from this reaction were higher than with the reaction of DNCZ and DCQZ with arylamines in the presence of zinc powder,¹ but for some arylamines, e.g. p-toluidine, p-anisidine, p-n-octyl-aniline, aniline and p-phenetidine, two by-products were also formed: viz. (a) 4-CH₃ (with nitrobenzene): 15% V.1, 25% I.7 and 60% II.1; (b) 4-CH₃ (without nitrobenzene): 35% III.3, 45% II.1, 20% others; (c) 2-OCH₃: 15% V.2, 20% I.3 and 65% II.6; (d) 4-n-C₈H₁₇: 18% V.3, 22% I.6 and 60% II.7; (e) H: 15% III.1, 20% IV.1 and 65% II.8; (f) 4-OC₂H₅: 15% III.2, 25% IV.2 and 60% II.9; (g) 3-OCH₃: 35% V.4, 30% I.4, 35% other components.

Kitao et al. have studied the reaction of 5-amino-2,3-dicyano-1,4-naphthoquinone with arylamines and pointed out that the initial quinone-quinoneimine tautomerism facilitates the 8-arylamination.

Ar = phenyl¹, II.8 p = methoxyphenyl¹, II.9

Scheme 1

Possible mechanisms for the reactions studied here are shown in Schemes 1 and 2.

3.2 Electronic spectra

Electronic spectra data for dyes I-II are shown in Table 3. Comparing the λ_{max} values and molar extinction coefficients of I.7 and I.2 with I.1; II.1 and II.2 with II.3; and of II.5 with II.6, hypsochromic shifts (4-9 nm) are apparent and also a hypochromic effect. This is because the 'bulky' groups inhibit intramolecular hydrogen bonding between the arylamino and carbonyl groups.⁷

3.3 Dyeing and fastness properties

All dyes I and II gave level colouration on PC film, with good fastness to light. The molar extinction coefficients of dyes II were larger than those of many anthraquinoid dyes, and the width of the near IR absorption

200 Y. C. Chao

band was very narrow (119-138 nm); dyes II thus meet possible requirements for use in optical data disks.

ACKNOWLEDGEMENT

The financial support of this project (NSC81-0405-E027-02) by the National Science Council of Taiwan is gratefully acknowledged.

REFERENCES

- 1. Chao, Y. C., Dyes and Pigments, 19 (1992) 123.
- 2. Peters, A. T. & Chao, Y. C., Dyes and Pigments, 13 (1990) 123.
- 3. Dawson, J. F., Rev. Prog. Colouration, 3 (1972) 18.
- 4. Peters, A. T., Fisher, A. & Lee, C. S., J. Chem. Tech. Biotechnol., 32 (1982) 532.
- 5. Gordon, P. F. & Gregory, P., Organic Chemistry in Colour. Springer-Verlag, Berlin, 1983, p. 75.
- 6. Takagi, K., Matsuoka, M., Kubo, Y. & Kitao, T, Dyes and Pigments, 6 (1985) 75.
- 7. Peters, A. T. & Chao, Y. C., J. Soc. Dyers Colour., 104 (1988) 435.